CHROM. 15,910

PRÄPARATIVE ISOLIERUNG VON MONO-, DI- UND TRIPURINNUCLEO-TIDEN AUS HYDROLYSATEN DEPYRIMIDINIERTER HERINGSSPER-MEN-DNA

HERBERT SCHOTT* und HERBERT SCHRADE

Institut für Organische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 7400 Tübingen (B.R.D.) (Eingegangen am 7. April 1983)

SUMMARY

Preparative isolation of mono-, di- and tripurine nucleotides from hydrolyzates of depyrimidinated herring sperm DNA

The purine nucleotides pdAp, pdGp, $(dA)_2$, (dA-dG), (dG-dA), $(dG)_2$, $(dA)_3$, (dA-dG-dA), (dA-dG-dA), (dG-dA-dG), (dG-dA), (dG-dA),

EINLEITUNG

Oligonucleotide beliebiger Sequenz sind in der Regel nur auf synthetischem Weg zugänglich. Obwohl in jüngster Zeit die Syntheseverfahren sehr vereinfacht werden konnten¹, sind sie immer noch finanziell aufwendig und nur mit speziellen Kenntnissen erfolgreich zu praktizieren.

Zahlreiche definierte Oligonucleotide können als Gemische oder als Einzelsubstanzen aus Partialhydrolysaten einer DNA in präparativen Mengen chromatographisch isoliert werden²⁻¹¹. Die Methode ist allerdings dadurch begrenzt, dass die sequenzspezifische Partialhydrolyse einer DNA nur bedingt möglich ist und die Auftrennung der anfallenden, sehr komplex zusammengesetzten Partialhydrolysate nur teilweise gelingt. In den Fällen, in denen dieser Weg anwendbar ist, stellt er eine sehr einfache Alternative zur chemischen Synthese dar, wie die präparative Isolierung von mono-, di- und trimeren Purinnucleotiden im folgenden zeigt.

EXPERIMENTELLES

Reagenzien

Tris-(hydroxymethyl)aminomethan p.a. (Merck, Darmstadt, B.R.D.), die übrigen Chemikalien werden in "chemisch reiner" Form verwendet. DNA (PWA Waldhof, Mannheim, B.R.D.), QAE-Sephadex A-25 (Pharmacia, Uppsala, Schweden), Enzyme: Alkalische Phosphatase, Orthophosphorsäure-Monoester-Phosphohydrolase (E.C. 3.1.3.1.), Phosphodiesterase I, Oligonucleotid-5'-Nucleotidhydrolase (E.C. 3.1.4.1.), (Boehringer, Mannheim, B.R.D.), Membranen (Amicon, Lexington, MA, U.S.A.).

Papierchromatographie

Die Papierchromatographie erfolgt absteigend auf Cellulosepapier MN 260 (Macherey, Nagel E Co., Düren, B.R.D.) Bogengrösse 58×60 cm.

Laufmittelsysteme

A: Ethanol-1 *M* Ammoniumacetat (pH 7.5); B: 1-Propanol-konz. Ammoniaklösung-Wasser (55:10:35).

Pufferlösungen

1 *M* Tris-HCl (pH 7.5): 121 g (1 mol) Tris-(hydroxymethyl)-aminomethan (Tris) werden in 900 ml Wasser gelöst. Die Lösung wird mit *ca.* 50 ml konz. HCl auf pH 7.5 eingestellt und dann mit Wasser auf 1 l aufgefüllt. 1 *M* Tris-HCl-Puffer, (pH 9.4) wird analog hergestellt. Zum Erreichen von pH 9.4 werden *ca.* 5 ml konz. HCl benötigt. 1 *M* TEAB (Triethylammoniumhydrogencarbonat Puffer) (pH 8.5): 0.14 l Triethylamin werden mit 0.75 l Wasser versetzt, durch Einleiten von CO₂ auf pH 8.5 gebracht und anschliessend mit Wasser auf 1 l aufgefüllt.

Säulenchromatographie

Bei den säulenchromatographischen Trennungen werden Fraktionen zu ca. 20 ml gesammelt. Die Absorption jeder 10. Fraktion wird spektralphotometrisch bei 250, 260 und 280 nm bestimmt. Die Trennungen des 3. und 4. Trennschritts werden nur bei 260 nm verfolgt. Die graphische Auftragung der bei 260 nm gemessenen Absorptionswerte gegen das Elutionsvolumen führt zu den abgebildeten Elutionsprofilen. Alle säulenchromatographischen Trennungen erfolgen bei Raumtemperatur.

(A) Säulenchromatographische Fraktionierung des niedermolekularen Purinoligonucleotidgemisches an QAE-Sephadex A-25 bei pH 7.5 (2. Trennschritt in Schema 1, siehe Fig. 1). Ca. 20 g (320.000-330.000 A_{260} -Einheiten) des niedermolekularen Purinoligonucleotidgemisches werden in 200 ml Wasser gelöst auf eine QAE-Sephadex A-25 Säule gepumpt. Die Säulenfüllung beträgt 50 × 5 cm und ist mit 0.05 M NaCl, 0.05 M Tris-HCl (pH 7.5) äquilibriert. Der Durchfluss wird mit einer Schlauchpumpe auf ca. 800 ml/h eingestellt. Die Trennung wird in einem vierstufigen NaCl-Gradienten, der mit 0.05 M Tris-HCl auf pH 7.5 gepuffert ist, wie folgt durchgeführt: 1. 8 1 0.05 M NaCl, 2. 17 1 0.10 M NaCl, 3. 10 1 0.15 M NaCl, 4. 1.5 1 1.00 M NaCl. Die Fraktionen von Peak III₁ und III₂ werden zusammen aufgearbeitet und im weiteren als Peak III bezeichnet. Partialhydrolysat einer depyrimidinierten DNA \downarrow (1) DEAE-Cellulose; 0.1 M NaCl, 0.05 M Tris-HCl (pH 7.5) niedermolekulare Purinoligonucleotide (Mono-Tetramere) QAE-Sephadex A-25; NaCl, 0.05 M Tris-HCl (pH 7.5) \pm (2) Peak: I Π Ш IV v VI 1(3) QAE-Sephadex A-25; NaCl, 0.05 M Tris-HCl (pH 9.4) Va. Vb. Vc. Vd Peak: Ia IIa. IIb. IIc IIIa. IIIb IVa VIa, VIb, VIc, VId OAE-Sephadex A-25; NaCl, 7 M Harnstoff, 0.05 M Tris-HCl (pH 9.4) 1 (4)

Peak:

 Va_1 , Va_2 Vc_1 , Vc_2 VIb_1 , VIb_2

Schema 1. Trennungsgang zur Isolierung von Purinnucleotiden aus dem Partialhydrolysat einer chemisch depyrimidinierten DNA. Peakprodukte nach dem 3. bzw. 4. Trennschritt werden identifiziert und charakterisiert. Die Ergebnisse sind in Tabelle VI zusammengefasst.

Die Peakfraktionen werden innerhalb der senkrechten Strichelung vereinigt, durch Ultrafiltration an einer UM-2 Membran entsalzt und lyophilisiert. Zwischenfraktionen werden verworfen.

(B) Säulenchromatographische Trennungen der Lyophilisate von Peak I-VI (vgl. Fig. 1) an QAE-Sephadex A-25 bei pH 9.4 (3. Trennschritt im Schema 1, siehe

Fig. 1. Elutionsprofil der säulenchromatographischen Trennung (2. Trennschritt in Schema 1) von 20 g niedermolekularer Purinnucleotide an QAE-Sephadex A-25. Die Trennung erfolgt bei Raumtemperatur im vierstufigen NaCl-Gradienten, der mit Tris-HCl auf pH 7.5 gepuffert ist, bei einem Durchfluss von 800 ml/h. Die Ergebnisse sind in Tabelle III zusammengefasst. Peakfraktionen werden innerhalb der senkrechten Strichelung vereinigt, entsalzt, lyophilisiert und anschliessend rechromatographiert (vgl. Fig. 2).

259

Fig. 2). Die Lyophilisate werden in Wasser gelöst auf die Säulen aufgetragen, die jeweils mit dem entsprechenden Startpuffer äquilibriert sind. Die Elution erfolgt nach den Angaben der Tabelle I im steigenden NaCl-Gradienten, der mit 0.05 M Tris-HCl auf pH 9.4 gepuffert ist. Zur Trennung der Lyophilisate von Peak I, II, IV-VI

Fig. 2.

(Fortsetzung S. 262)

261

Fig. 2.

Fig. 2. Elutionsprofile (a-f) der säulenchromatographischen Nachtrennung (3. Trennschritt in Schema I) der Lyophilisate von Peak I VI der Fig. 1 and QAE-Sephadex A-25. Die Rechromatographie erfolgt unter den Bedingungen aus Tabelle I im NaCl-Gradienten, der auf pH 9.4 gepuffert ist. Die Ergebnisse sind in Tabelle IV zusammengefasst. Die Lyophilisate von Peak Va, Vc, VIb werden anschliessend rechromatographiert (vgl. Fig. 3). Das Lyophilisat von Peak IIIb wird nach der enzymatischen Dephosphorylierung an QAE-Sephadex nachgetrennt (vgl. Fig. 4). Die Identifizierung und Charakterisierung der Peakprodukte sind in Tabelle VI zusammengefasst.

TABELLE I

BEDINGUNGEN DER SÄULENCHROMATOGRAPHISCHEN TRENNUNGEN DER LYOPHILISATE VON PEAK I-VI AUS FIG. 1 AN QAE-SEPHADEX A-25 BEI pH 9.4

	mg	ml	1. Stufe	2. Stufe		3. Stufe	4. Stufe		Fig. 2
				Mischgefäss	Vorrat		Mischgefäss	Vorrat	_
I	580	10	7.5 1 0.10						a
П	720	12	5 1 0.10	4 1 0.10	4 1 0.12	4 1 0.12		_	ь
III	3000	50	6 1 0.10	5 1 0.10	510.12	10 1 0.12	5 1 0.12	510.14	c
IV	1100	30	11 1 0.13	10 1 0.13	10 1 0.17	510.17	2 1 0.17	2 1 0.19	d
v	1700	50	11 1 0.13	10 1 0.13	10 1 0.17	_			e
VI	4530	130	10 1 0.14	10 1 0.14	10 1 0.18	_	5 1 0.18	510.21	f

Aufgetragene Mengen Molare NaCl-Konzentrationen der Gradienten

werden Säulen mit 70 \times 3 cm I.D. verwendet, die mit ca. 600 ml/h eluiert werden. Das Lyophilisat von Peak III wird an einer 50 \times 5 cm I.D. Säule mit ca, 800 ml/h chromatographiert. Verbindungen, die nach Durchlauf des Gradienten noch adsorbiert sind, werden mit ca. 1.5 l 1 M NaCl eluiert. Die Peakfraktionen werden wie in (A) beschrieben aufgearbeitet.

(C) Säulenchromatographische Trennung der Lyophilisate von Peak Va, Vc und VIb an QAE-Sephadex A-25 bei pH 9.4 unter Zusatz von 7 M Harnstoff (4. Trennschritt im Schema 1, siehe Fig. 3). Die Lyophilisate werden in 7 M Harnstoff gelöst auf die Säulen aufgetragen, die mit 0.13 M NaCl, 0.05 M Tris-HCl (pH 9.4), 7 M Harnstoff äquilibriert sind. Die Elution erfolgt nach den Angaben der Tabelle II im steigenden NaCl-Gradienten, der mit 0.05 M Tris-HCl auf pH 9.4 gepuffert und mit 7 M Harnstoff versetzt ist. Zur Trennung der Lyophilisate von Peak Va und VIb werden Säulen mit 70 \times 3 cm I.D. verwendet, die mit ca. 600 ml/h eluiert werden. Das Lyophilisat von Peak Vc wird an einer 45 \times 2 cm I.D. Säule mit ca. 400 ml/h chromatographiert. Nach Durchlauf des Gradienten werden die Säulen mit 111 M NaCl eluiert. Die Peakfraktionen werden wie in (A) beschrieben aufgearbeitet.

(D) Säulenchromatographische Trennung der Sequenzisomeren (dA, dG) aus dem Lyophilisat von Peak IIIb der Fig. 2c (siehe Fig. 4). 80 mg (ca. 1500 A₂₆₀-Einheiten) des Lyophilisats von Peak IIIb der Fig. 2c werden in 200 µl Wasser mit 30 µl 1 M Tris-HCl (pH 8.1) sowie 100 U alkalischer Phosphatase 12 h bei 37°C inkubiert. Anschliessend wird der Ansatz mit H₂O auf 10 ml verdünnt und auf eine QAE-Sephadex A-25 Säule aufgetragen. Die Säulenfüllung beträgt 45×2 cm I.D. und ist mit 0.05 M TEAB (pH 8.5) äquilibriert. Die Säule wird mit cq. 51 0.05 M TEAB bei einer Laufgeschwindigkeit von 200 ml/h eluiert. Die Fraktionen von Peak III_{b_1} und III_{b_2} (vgl. Fig. 4) werden innerhalb der senkrechten Strichelung vereinigt, am Rotationsverdampfer konzentriert und durch wiederholte Pyridinzugabe vom flüchtigen TEAB befreit. Das Pyridin wird anschliessend durch mehrmaliges Abrotieren mit 2% Ammoniaklösung entfernt. Danach werden die Lösungen lyophilisiert. Hierbei erhält man aus Peak III_b, 25 mg (\approx 500 A₂₆₀-Einheiten) dA-dG (31%) und aus Peak III_b, 30 mg (≈580 A₂₆₀-Einheiten) dG-dA (38%) in chromatographisch reiner Form.

Fig. 3. Elutionsprofile (a-c) der säulenchromatographischen Nachtrennung (4. Trennschritt in Schema 1) der Lyophilisate von Peak Va, Vc (Fig. 2e) und Peak VIb (Fig. 2f) an QAE-Sephadex A-25. Die Rechromatographie erfolgt unter den Bedingungen aus Tabelle II im steigenden NaCl-Gradienten bei pH 9.4 unter Zusatz von 7 *M* Harnstoff. Die Ergebnisse sind in Tabelle IV, Identifizierung und Charakterisierung der Peakprodukte sind in Tabelle VI zusammengefasst.

TABELLE II

BEDINGUNGEN DER SÄULENCHROMATOGRAPHISCHEN TRENNUNGEN DER LYOPHILISATE VON PEAK Va, Vc, VIb AUS FIG. 2e, f AN QAE-SEPHADEX A-25 IM STEIGENDEN NaCI-GRADIENTEN BEI pH 9.4 UNTER ZUSATZ VON 7 *M* HARNSTOFF

Peak	Aufgetra gelöst ir Harnsta	agene Menge n 7 M off	Molare No	aCl-Konzentratio	onen der Gro	idienten			
	mg	ml	1. Stufe	2. Stufe		3. Stufe	4. Stufe		Fig. 3
				Mischgefäss	Vorrat	~	Mischgefäss	Vorrat	_
Va	480	15	4 1 0.13	5 1 0.13	510.15	_	2 1 0.15	2 1 0.17	a
Vc	210	6	2 1 0.13	6 1 0.13	610.16	_	-	_	b
VIb	1370	100	8 1 0.14	510.14	510.15	8 1 0.15	5 1 0.15	510.17	с

ERGEBNISSE

Hydrazin zerstört die Pyrimidinbasen einer DNA. Aus der depyrimidinierten DNA setzt Alkali intakte Purinnucleotidsegmente frei. Dieses Abbauverfahren wurde für analytische Zwecke entwickelt^{12–15} und wird heute zur DNA-Sequenzierung genutzt¹⁶. Wir haben die Abbaureaktionen in den präparativen Masstab übertragen und DNA aus Heringsspermen, die in grösseren Mengen leicht zugänglich ist, zu Purinoligonucleotiden hydrolysiert³. Aus dem anfallenden Gemisch werden nach dem in Schema 1 aufgeführten Trennungsgang definierte mono-trimere Purinnucleotide in 3–4 Trennschritten säulenchromatographisch isoliert.

Im 1. Trennschritt, der in einer früheren Arbeit beschrieben ist³, werden mit

Fig. 4. Elutionsprofil der säulenchromatographischen Trennung von 80 mg einer Mischung der Sequenzisomeren (dA,dG) an QAE-Sephadex A-25 ($45 \times 2 \text{ cm I.D.}$). Die Elution erfolgt mit 0.05 *M* TEAB (pH 8.5). Der Durchfluss beträgt *ca.* 250 ml/h. In Peak IIIb₁ verlässt (dA-dG), in Peak IIIb₂ verlässt (dG-dA) die Säule.

Hilfe eines Ionenaustauschers (DEAE-Cellulose) die langkettigen Purinoligonucleotide von den kurzkettigen getrennt, die *ca*. 60% des Partialhydrolysats einer depyrimidinierten Heringsspermen-DNA ausmachen. Das Gemisch der kurzkettigen Purinnucleotide wird nach dem im folgenden beschriebenen Trennungsgang weiter aufgetrennt.

Im 2. Trennschritt wird das Gemisch an dem stark basischen Anionenaustauscher QAE-Sephadex A-25 mit einem vierstufigen NaCl-Gradienten, der auf pH 7.5 gepuffert ist, fraktioniert. Hierbei wird das in Fig. 1 abgebildete Elutionsprofil erhalten. Produkte, die in der 1. Stufe mit 0.05 M NaCl die Säule verlassen, werden verworfen. In der 2. Stufe werden mit 0.1 M NaCl Peak I und II eluiert, denen Peak III₁ und III₂ folgen. In der 3. Stufe verlassen mit 0.15 M NaCl nacheinander Peak IV und V die Säule. In der 4. Stufe wird mit 1 M NaCl Peak VI eluiert. Die Ergebnisse der Trennung sind in Tabelle III zusammengefasst. Der 2. Trennschritt wird insgesamt fünfmal mit jeweils 20 g der Mischung durchgeführt. Alle Trennungen ergeben im wesentlichen das gleiche Elutionsprofil, wobei aber Peak III₁ und III₂ sowie Peak V und VI von Trennung zu Trennung unterschiedlich gut voneinander getrennt sind. Die Unterschiede sind vermutlich darauf zurückzuführen, dass die Gemische aus verschiedenen Partialhydrolyseansätzen stammen, in denen der Anteil der einzelnen Purinnucleotide unterschiedlich hoch sein kann. Die Fraktionen von Peak III₁ und III₂ werden vereinigt und im folgenden als Peak III bezeichnet.

Die innerhalb der senkrechten Strichelung vereinigten Peakfraktionen werden durch Ultrafiltration entsalzt und anschliessend lyophilisiert. Bei der Ultrafiltration treten unterschiedlich hohe Verluste auf. Hierfür ist einerseits die schwankende Güte der Membranen verantwortlich, andererseits hydrolysieren während der Ultrafiltration terminale Phosphatgruppen. Die dephosphorylierten Oligonucleotide können die Membran leichter passieren als entsprechende Oligonucleotide, die terminale Phosphatgruppen aufweisen.

TABELLE III

Peak	Eluiert bei NaCl-Konz.	Eluierte Meng	en		Isolieri	Isolierte Mengen		
	М	A ₂₆₀ -Einh.	%	%*	mg	%	%*	
I	0.10	9800	2.8	4 .1	100	0.5	0.8	
II	0.10	12,200	3.5	3.5	120	0.6	0.9	
ш, { ш	0.10	31,700	9.2	. 23.7	1330	6.7	10.1	
III, 5	0.10	49,200	14.3	20.1	980	4.9 \$	10.1	
IV	0.15	40,900	11.9	11.9	1100	5.6	4.1	
v	0.15	49,300	14.3	6.0	1700	8.6	4.0	
VI	1.00	113,900	33.0	36.1	4600	23.0	26.0	
Zwischen-								
fraktionen	_	38,000	11.0	14.7	_	_	-	

ERGEBNISSE DER SÄULENCHROMATOGRAPHISCHEN FRAKTIONIERUNG (2. TRENN-SCHRITT IN SCHEMA 1, VGL. FIG. 1) VON 20 g (ca. 345,000 A_{260} -EINHEITEN) NIEDER-MOLEKULARER PURINNUCLEOTIDE AN QAE-SEPHADEX A-25 IM STEIGENDEN NaCl-GRADIENTEN BEI pH 7.5

* Aus 5 Trennungen gemittelt.

Im 3. Trennschritt (vgl. Schema 1) werden die Lyophilisate von Peak I-VI bei pH 9.4 an QAE-Sephadex A-25 im NaCl-Gradienten weiter aufgetrennt, wobei die in Fig. 2 abgebildeten Elutionsprofile erhalten werden. Die Trennergebnisse sind in Tabelle IV zusammengefasst. Die Peakfraktionen werden aufgearbeitet und papierchromatographisch untersucht. Wandert ein Aliquot eines Lyophilisats in unterschiedlichen Laufmittelsystemen einheitlich, so wird das Lyophilisat als "chromatographisch rein" bezeichnet. Bildet ein Lyophilisat im Papierchromatogramm mehrere Flecken, so werden alle Flecken ausgeschnitten und eluiert. Aus den spektralphotometrisch bestimmten A_{260} -Einheiten jedes einzelnen Fleckens wird die prozentuale Zusammensetzung des betreffenden Lyophilisats ermittelt. Die papierchromatographisch Untersuchung zeigt, dass die Lyophilisate von Peak Ia-IVa "chromatographisch rein" sind, während die von Peak Va-VId eine unterschiedliche Anzahl von Komponenten enthalten (vgl. Tabelle V).

TABELLE IV

ERGEBNISSE DER SÄULENCHROMATOGRAPHISCHEN NACHTRENNUNGEN DER LYOPHILISATE VON PEAK I-VI (FIG. 1), PEAK Va, Vc (FIG. 2e), VIb (FIG. 2f) AN QAE-SEPHADEX A-25

Die Rechromatographie der Lyophilisate von Peak I-VI erfolgt im steigenden NaCl-Gradienten bei pH 9.4. Die übrigen Lyophilisate werden im gleichen Gradienten unter Zusatz von 7 M Harnstoff nachgetrennt.

Aufgetragene Purin- nucleotidmischung Lyophilisat Mengen		Getrennte Purinnucleotide						Isolierte Purinnucleotide			
Peak	Fig.	A ₂₆₀ -Einh.	Eluiert be	ei NaCl- H	Konz.	Mengen		Menţ	Mengen		
			тM	Peak	Fig.	A ₂₆₀ -Einh.	%	mg	%	Bezeichnung	(%)~
I	1	11,000	100	Ia	2a	4690	42.6	20	3.5	(dA)3	100
11	I	14,400	110-120	Ila	2Ъ	1890	13.1	10	1.4	(dA-dG-dA)	100
			120	IIb	2Ь	2200	15.3	80	11.1	(dA-dA-dG)	100
			120	IIc	2b	3000	20.9	70	9.7	(dG-dA-dA)	100
III	1	47,800	110-120	IIIa	2c	13,300	27.9	130	4.3	$p(dA)_2$	100
			130-140	IIIb	2c	16,800	35.2	230	7.7	p(dA, dG)	100
IV	1	24,900	170	IVa	2d	9470	38.0	160	14.5	$p(dG)_2$	100
v	1	34,500	130	Va	2e	3570	10.3	130	7.6	-	
			130	Vb	2e	4720	13.7	110	6.5	$p(dA)_3$	92
			140-150	Vc	2e	6980	20.2	210	12.3	_	_
			150	Vd	2e	3770	10.9	120	7.1	p(dG)p	76
VI	1	81,700	140	VIa	2f	3810	4.7	150	3.3	$p(dA)_3$	95
			140-150	VIb	2f	11,140	13.6	530	11.7		-
			170-180	VIc	2f	11,240	13.8	520	11.5	p(dG-dA-dG)	86
			200-210	VId	2f	4080	5.0	190	4.2	$p(dG_2, dA_2)$	53
Va	2e	7990	140-150	Vaı	3a	2010	25.2	80	16.7	$p(dA)_2$	86
			150-160	Va ₂	3a	4410	55.2	170	35,4	p(dA)p	93
Vc	2e	3960	145	Vc_1	3b	860	21.8	40	19.0	p(dA-dG-dA)	85
			150	Vc ₂	3b	2270	57.4	110	52.4	p(dG-dA-dA)	46
VIb	2f	21,500	140-150	VIb ₁	3c	5620	26.1	310	22.6	p(dA-dG-dA)	73
			150	VIb ₂	3c	4280	19.9	230	16.8	p(dG-dA-dA)	66

* Aus den A_{260} -Einheiten ermittelt, die bei der Elution der Flecken aus den Papierchromatogrammen erhalten werden.

TABELLE V

ERGEBNISSE DER PAPIERCHROMATOGRAPHISCHEN UNTERSUCHUNG DER LYOPHILI-SIERTEN PEAKFRAKTIONEN

Peak Fig. Nr. Anteil (%) B A Ia 2a 1. 100 1.08 0.60 0.60* (dA) ₃ IIa 2b 1. 100 0.95 0.51 0.51* (dA-dG-dA) IIb 2b 1. 100 0.94 0.52 0.52* (dA-dA-dG) IIc 2b 1. 100 0.94 0.52 0.52* p(dA) ₄ dG) IIb 2c 1. 100 0.70 0.26 1.52* p(dA) ₄ G) IIb 2c 1. 100 0.40 0.19 1.11* p(dG) ₂ Va ₁ 3a 1. 6 1.11 - - - 2. 2 0.76 - - - - - 3. 93 0.60 0.14 3.70* pdAp - - - - - - - - - - - -	Lyophili	isat	Auftrei Fleckei	tende n	R _F -Wert von pdA	e relativ zu denen im Laufmittel		Identifizierte Purinnucleo-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak	Fig.	<i>Nr</i> .	Anteil (%)	B	A		tide Bezeichnung
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ia	2a	1.	100	1.08	0.60	0.60*	(dA) ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IIa	2Ъ	1.	100	0.95	0.51	0.51*	(dA-dG-dA)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Пb	2Ъ	1.	100	0.94	0.52	0.52*	(dA-dA-dG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IIc	2Ь	1.	100	0.94	0.52	0.52*	(dG-dA-dA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IIIa	2c	1.	100	0.90	0.36	1.80*	$p(dA)_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ШЬ	2c	1.	100	0.70	0.26	1.52*	p(dA,dG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IVa	2d	Ι.	100	0.40	0.19	1.11*	$p(dG)_{a}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Va	3a	I.	6	1.11	0.172		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	86	0.90	0.36	1.80*	$\mathbf{n}(\mathbf{dA})_{\mathbf{a}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	8	0.77	0.20	1.00	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Va.	39	1	5	0.92			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(u ₂	Ju	2	2	0.76			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	03	0.70	0.14	3 70*	ndAn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vb	20	J.	1	0.00	0.14	5.70	punp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	20	2	4	0.99			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	งว	0.37	0.13	0.60*	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ve	26	1	10	0.70	0.15	0.00	p(uA)3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VC1	50	1.	10	0.70			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	95	0.70	0.00	0.51*	=
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vo	26	3. 1	0.J 1.6	0.37	0.09	0.51	p(dA-dG-dA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VC ₂	50	1.	10	0.73			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	14	0.77	0.27	1.54*	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.	23	0.70	0.26	1.54^	p(dG-dA)
Va 2e 1. 7 0.39 $-$ 2. 16 0.52 $ -$ 3. 76 0.44 $ 3.51^*$ pdGp VIa 2f 1. 5 0.90 $-$ 2. 95 0.70 0.13 0.60* p(dA)_3 VIb ₁ 3c 1. 16 0.95 0.51* $-$ 2. 95 0.70 0.13 0.60* p(dA)_3 VIb ₁ 3c 1. 16 0.95 0.51* $-$ 2. 11 0.70 1.50* $ -$ 3. 73 0.57 0.09 0.51* p(dA-dG-dA) VIb ₂ 3c 1. 8 0.93 $0.53*$ $-$ 3. 66 0.55 0.08 0.52* p(dG-dA-dA) $2. 26 0.71 3. 86 0.51 0.07 0.40* p(dG-dA-dG) 2. 38 0.60 -$	37.1	1	4.	40	0.55	0.08	0.52*	p(aG-aA-aA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	va	Ze	1.	1	0.59			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	16	0.52			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.	/6	0.44	-	3.51*	pdGp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vla	21	1.	5	0.90			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	2.	95	0.70	0.13	0.60*	$p(dA)_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VID ₁	3c	1.	16	0.95		0.51*	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	11	0.70		1.50*	—
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.	73	0.57	0.09	0.51*	p(dA-dG-dA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VIb ₂	3c	1.	8	0.93		0.53*	—
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.	26	0.70		1.54*	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.	66	0.55	0.08	0.52*	p(dG-dA-dA)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VIc	2f	1.	8	0.80			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2.	6	0.71			-
VId 2f 1. 9 0.70 $-$ 2. 38 0.60 $-$ 3. 53 0.46 0.03 0.12* $p(dA_2, dG_2)$			3.	86	0.51	0.07	0.40*	p(dG-dA-dG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VId	2f	1.	9	0.70			-
3. 53 0.46 0.03 0.12^{\star} p(dA ₂ ,dG ₂)			2.	38	0.60			-
			3.	53	0.46	0.03	0.12*	$p(dA_2, dG_2)$

Papier: Macherey, Nagel & Co. MN 260.

* Nach Behandlung mit alkalischer Phosphatase.

Die Lyophilisate von Peak Va, Vc und VIb sind so komplex zusammengesetzt, dass eine weitere säulenchromatographische Trennung (4. Trennschritt in Schema 1) erforderlich ist, die an QAE-Sephadex A-25 bei pH 9.4 unter Zusatz von 7 *M* Harnstoff durchgeführt wird und zu den Elutionsprofilen der Fig. 3 führt. Die Ergebnisse des 4. Trennschritts sind in Tabelle IV zusammengefasst. Die papierchromatographische Untersuchung der aufgearbeiteten Peakfraktionen zeigt, dass die Lyophilisate von Peak Va₁ und Va₂ zu 86% bzw. 93% "chromatographisch rein" sind, während Peak Vc₁, Vc₂, VIb₁ und VIb₂ mehrere Komponenten enthalten, die vermutlich bei der Aufarbeitung aus den jeweiligen Hauptprodukten durch Dephosphorylierung terminaler Phosphatgruppen entstanden sind.

Die Sequenz der säulenchromatographisch isolierten Purinnucleotide, sowie der aus den Papierchromatogrammen eluierten Hauptprodukte, wird aus den UV-Absorptionsverhältnissen, R_r -Werten und Ergebnissen des enzymatischen Abbaus ermittelt. Hierbei wird in Analogie zur Sequenzbestimmung von Pyrimidinnucleotiden verfahren, die in früheren Arbeiten ausführlich beschrieben und diskutiert wurde². Charakterisierung und Identifizierung der isolierten Purinnucleotide führen im Einzelnen zu folgenden Ergebnissen, die in Tabelle VI zusammengefasst sind.

Peak Ia (Fig. 2a) enthält in chromatographisch reiner Form das Trinucleosiddiphosphat $(dA)_3$, das mit alkalischer Phosphatase nicht, mit Phosphodiesterase aus Schlangengift dagegen zu pdA und dA im Verhältnis 1.94:1.00 abgebaut wird.

Im Lyophilisat von Peak IIa (Fig. 2b) findet man in chromatographischer Reinheit das Trinucleosiddiphosphat (dA-dG-dA), das in den Laufmittelsystemen A und B als einheitlicher Fleck wandert und dessen $R_{\rm F}$ -Werte unter dem von (dA)₃ liegen. Mit alkalischer Phosphatase erfolgt kein Abbau. Mit Phosphodiesterase erhält man pdA, pdG und dA im Verhältnis 1.00:1.09:0.97. Da dG im Totalhydrolysat nicht gefunden wird, ist die Struktur (dG-dA-dA) auszuschliessen. Die Unterscheidung zwischen (dA-dG-dA) und (dA-dA-dG), die mit Phosphodiesterase prinzipiell die gleichen Spaltprodukte im gleichen Verhältnis liefern, wird mit Hilfe des partiellen enzymatischen Abbaus getroffen. Das auftretende Dinucleosidphosphat (dA-dG) wird durch Absorptionsverhältnisse und $R_{\rm F}$ -Wert identifiziert. Es zeigt sich, dass beim Partialabbau kein (dA)₂ gebildet wird, womit die Struktur (dA-dA-dG) ausgeschlossen werden kann.

Das Lyophilisat von Peak IIb (Fig. 2b) enthält das Trinucleosiddiphosphat (dA-dA-dG) in chromatographische reiner Form. Bezüglich des papierchromatographischen Verhaltens und der Absorptionsverhältnisse ist das Produkt dem in Peak IIa eluierten (dA-dG-dA) sehr ähnlich. Mit alkalischer Phosphatase erfolgt ebenfalls kein Abbau. Mit Phosphodiesterase erhält man pdA, pdG und dA im Verhältnis 1.00:1.05:0.94. Beim enzymatischen Partialabbau wird (dA)₂ gebildet.

Das Lyophilisat von Peak IIc (Fig. 2b) enthält in chromatographisch reiner Form das Trinucleosiddiphosphat (dG-dA-dA), das im papierchromatographischen Verhalten und den Absorptionsverhältnissen mit dem Lyophilisat von Peak IIb identisch ist. Der Abbau mit Phosphodiesterase liefert aber pdA und dG im Verhältnis 1.86:1.00, wodurch die Struktur (dG-dA-dA) bestätigt wird.

Das Lyophilisat von Peak IIIa (Fig. 2c) enthält zu ca. 91% $p(dA)_2$ und zu ca. 9% $(dA)_2p$, die in den Laufmittelsystemen A und B einheitlich wandern. Nach Phosphatasebehandlung wandert das Produkt im Laufmittelsystem A wiederum als einheitlicher Fleck. Der Abbau des dephosphorylierten Produkts mit Phosphodiesterase

Purinnucleotid Bezeichnung	Isoliert	sne	Absorption	1sverhältnisse	(<i>pH</i> 7.0)		Spaltung mit Phosphoa Schlangengift	tiesterase aus	
	Peak	Fig.	250/260 m	2	280/260 m		Spaltprodukte	Verhältnisse Spaltproduk	der te
			Berech.	Beob.	Berech.	Beob.	1	Erwartet	Gefunden
(dA) ₃	Ia	2a	0.79	0.84	0.14	0.24	pdA, dA	2:1	1.94:1.00
(AA-dG-dA)	IIa	2b	0.88	0.92	0.29	0.33	pdA, pdG, dA	1:1:1	1.00:1.09:0.97
(dA-dG)	lIb	2b	0.88	0.95	0.29	0.39	pdA, pdG, dA	1:1:1	1.00:1.05:0.94
(dG-dA-dA)	IIc	2b	0.88	0.95	0.29	0.39	pdA, dG	2:1	1.86:1.00
(dA) ₂	IIIa	20	0.79	0.83	0.14	0.23	pdA, dA	1:1	1.00:1.09
(dA-dG)	IIIb1	4	0.93	0.97	0.38	0.40	pdG, dA	1:1	1.00:1.05
(dG-dA)		4	0.93	0.96	0.38	0.41	pdA, dG	1:1	1.02:1.00
$(dG)_2$	IVa	2d	1.11	1.15	0.68	0.63	pdG, dG	1:1	1.00:0.98
(dA) ₂	Va_1	3a	0.79	0.81	0.14	0.22	pdA, dA	1:1	1.00:1.03
dA	Va_2	За	0.79	0.78	0.14	0.16	keine Spaltung	1	I
(dA) ₃	Vb	2e	0.79	0.84	0.14	0.24	pdA, dÂ	2:1	1.92:1.00
(dA-dG-dA)	Vc1	3b	0.88	0.94	0.29	0.34	pdA, pdG, dA	1:1:1	0.91:1.00:1.05
(dG-dA-dA)	Vc_2	3b	0.88	0.94	0.29	0.40	pdA, dG	2:1	2.00:1.18
qG	ΡΛ	5 6	1.11	1.15	0.68	0.68	keine Spaltung		1
(dA) ₃	VIa	2f	0.79	0.78	0.14	0.23	pdA, dA	2:1	1.90:1.00
(dA-dG-dA)	VIb1	3c	0.88	0.92	0.29	0.33	pdA, pdG, dA	1:1:1	0.89:1.01:1.00
(dG-dA-dA)	VIb_2	30	0.88	0.95	0.29	0.39	pdA, dG	2:1	2.00:1.14
(dG-dA-dG)	VIc	2f	0.98	1.07	0.47	0.50	pdA, pdG, dG	1:1:1	0.97:1.00:1.07
(dA_2, dG_2)	ΡΙΛ	2f	0.93	1.01	0.38	0.41	pdA, pdG, dA, dG	1:1*	1.00:109*

UV-ABSORPTIONSVERHÄLTNISSE UND ERGEBNISSE DER ENZYMATISCHEN SPALTUNG DER DEPHOSPHORYLIERTEN PURINNIICI FO-**TABELLE VI**

liefert pdA und dA im Verhältnis 1.00:1.09. Die Anwesenheit beider Sequenzisomerer im einheitlich wandernden Fleck wird durch direkten Abbau mit Phosphodiesterase bewiesen.

In Peak IIIb (Fig. 2c) wird in chromatographisch reiner Form die Mischung der sequenzisomeren Dinucleotide p(dA,dG) und (dA,dG)p eluiert. Das dephosphorylierte Gemisch wird an QAE-Sephadex A-25 mit 0.05 *M* TEAB (pH 8.5) in die beiden Sequenzisomeren (dA-dG) und (dG-dA) getrennt (vgl. Fig. 4). Peak IIIb₁, in dem ca. 34% der aufgetragenen Mischung eluiert werden, enthält chromatographisch reines (dA-dG), während (dG-dA), das in Peak IIIb₂ die Säule verlässt, 39% der aufgetragenen Mischung ausmacht. Die Sequenz der beiden Dinucleosidphosphate wird durch Phosphodiesterase Abbau eindeutig bestätigt. Die säulenchromatographische Auftrennung der Sequenzisomeren lässt sich verbessern, wenn man die Säule anstelle von TEAB mit 0.03 *M* Tris-HCl (pH 9.0) eluiert. Dieser Vorteil geht allerdings auf Kosten der Ausbeute an isoliertem Material verloren, da bei der Entfernung des Tris-HCl Puffers durch Ultrafiltration hohe Substanzverluste auftreten. Bei Anwendung der von anderen Autoren beschriebenen Elutionsbedingungen¹⁷ (DEAE-Sephadex A-25, Ammoniumformiat pH 3.4) liess sich überraschenderweise keine Auftrennung dieser Sequenzisomerenmischung erzielen.

Im Lyophilisat von Peak IVa (Fig. 2d) ist zu $82\% p(dG)_2$ und zu $18\% (dG)_2p$ enthalten. Die Dinucleotide wandern in den Laufmittelsystemen A und B einheitlich und merklich langsamer als die aus Peak IIIb isolierten Dinucleotide p(dA,dG) und (dA,dG)p. Nach Phosphataseabbau findet man in den Laufmittelsystemen A und B einen einheitlich wandernden Fleck. Die R_F -Werte liegen wiederum unter denen, der aus Peak IIIb erhaltenen Dinucleosidphosphate (dA,dG). Der Phosphodiesteraseabbau des dephosphorylierten Produkts liefert pdG und dG im Verhältnis 1.00:0.98. Die Anwesenheit beider Sequenzisomerer, $p(dG)_2$ und $(dG)_2p$, beweist der direkte Abbau mit Phosphodiesterase.

Die Lyophilisate von Peak Va₁-VId werden im Papierchromatogramm in 1 Hauptfleck (Peak VId in 2 Hauptflecke) und einen oder mehrere Nebenflecke aufgetrennt. Im folgenden werden nur die Hauptprodukte untersucht. Im Lyophilisat von Peak Va₁ (Fig. 3a) ist zu 86% eine Mischung aus $p(dA)_2$ und $(dA)_2p$ enthalten, die in den Absorptionsverhältnissen, R_F -Werten und Ergebnissen des enzymatischen Abbaus mit der in Peak IIIa eluierten Mischung der Dinucleotide identisch ist.

Die Lyophilisate von Peak Va₂ (Fig. 3a) und Peak Vd (Fig. 2e) enthalten zu 93% bzw. 76% die Nucleosid-3',5'-diphosphate pdAp bzw. pdGp. Die gemessenen Absorptionsverhältnisse stimmen mit den berechneten Werten überein. Die Substanzen werden durch alkalische Phosphatase zu den Nucleosiden abgebaut, die im Laufmittelsystem A eindeutig als dA bzw. dG identifiziert werden. Mit Phosphodiesterase erfolgt kein Abbau. In den Lyophilisaten von Peak Vb (Fig. 2e) und Peak VIa (Fig. 2f) ist die Mischung der Trinucleotide $p(dA)_3$ und $(dA)_3p$ zu 92% bzw. 95% enthalten. Nach Phosphatasebehandlung wandert das Produkt im Laufmittelsystem A als einheitlicher Fleck, der im R_F -Wert mit dem aus Peak Ia isolierten (dA)₃ identisch ist. Beim Abbau des Trinucleosiddiphosphats mit Phosphodiesterase erhält man pdA und dA im Verhältnis 1.90:1.00. Der Anteil der beiden Nucleotide in beiden Peaks wird durch direkten Phosphodiesteraseabbau zu 91% $p(dA)_3$ und 9%(dA)₃p bestimmt.

Die Untersuchung der Lyophilisate von Peak Vc1, Vc2, VIb1 und VIb2 ergibt,

dass das Hauptprodukt von Peak Vc1 mit dem von Peak VIb1 und das von Peak Vc2 mit dem von Peak VIb₂ identisch ist, so dass nur Peak VIb₁ und Peak VIb₂ näher betrachtet werden. Das Lyophilisat von Peak VIb1 (Fig. 3c) enthält zu 73% eine Mischung der Trinucleotide p(dA-dG-dA) und (dA-dG-dA)p, die im Lyophilisat von Peak Vc₁ (Fig. 3b) zu 85% enthalten sind. Der Anteil der beiden Nucleotide in beiden Peaks wird durch direkten Phosphodiesteraseabbau zu 94% p(dA-dG-dA) und 6% (dA-dG-dA)p bestimmt. Bei der papierchromatographischen Untersuchung in den Laufmittelsystemen A und B wandert das Hauptprodukt des Lyophilisats von Peak VIb₁ als einheitlicher Fleck. Nach Behandlung mit Phosphatase ist das Abbauprodukt papierchromatographisch einheitlich und im R_F -Wert und den Absorptionsverhältnissen gegenüber den in Peak II eluierten sequenzisomeren Trinucleosiddiphosphaten (dA2,dG) sehr ähnlich. Beim Abbau des dephosphorylierten Produkts mit Phosphodiesterase erhält man pdA, pdG und dA im Verhältnis 0.89:1.01:1.00. Um die Sequenz festzulegen wird ein partieller Abbau mit Phosphodiesterase durchgeführt. Das partiell abgebaute Produkt aus Peak VIb₁ liefert nach Behandlung mit Phosphodiesterase die Spaltprodukte pdG und dA im Verhältnis 1.01:1.00 und ist damit als (dA-dG) identifiziert. R_F-Wert und Absorptionsverhältnisse bestätigen dieses Ergebnis zusätzlich. Während der Totalabbau mit Phosphodiesterase das Vorliegen von (dG-dA-dA) ausschliesst, denn dG wird im Totalhydrolysat nicht gefunden, beweist der Partialabbau die Struktur (dA-dG-dA), da das Partialhydrolysat von (dA-dA-dG) das Dinucleosidphosphat (dA)₂ enthalten müsste.

Peak VIb₂ (Fig. 3c) enthält zu 66% eine Mischung der Trinucleotide p(dG-dA-dA) und (dG-dA-dA)p, die in Peak Vc₂ (Fig. 3b) zu 46% enthalten sind. Die Mischung der Trinucleotide setzt sich in beiden Peaks aus 89% p(dG-dA-dA) und 11% (dG-dA-dA)p zusammen. Die Anwesenheit beider Trinucleotide wird durch direkten Abbau mit Phosphodiesterase bewiesen. Bezüglich des papierchromatographischen Verhaltens, der Absorptionsverhältnisse und der Ergebnisse des enzymatischen Abbaus mit Phosphatase, ist das Hauptprodukt des Lyophilisats von Peak VIb₂ dem in Peak VIb₁ eluierten p(dA-dG-dA) ähnlich. Beim Abbau des dephosphorylierten Produkts mit Phosphodiesterase erhält man pdA und dG im Verhältnis 2.00:1.14. Mit diesem Ergebnis stcht einzig die Struktur (dG-dA-dA) in Einklang. Eine zusätzliche Bestätigung liefert der Partialabbau mit Phosphodiesterase. Das im Partialhydrolysat gefundene Dinucleosidphosphat wird durch R_F -Wert, Absorptionsverhältnisse und Totalabbau mit Phosphodiesterase eindeutig als (dG-dA) identifiziert. Der Abbau mit Phosphodiesterase liefert pdA und dG im Verhältnis 1.00:1.17.

Das Lyophilisat von Peak VIc (Fig. 2f) enthält zu 86% eine Mischung der Trinucleotide p(dG-dA-dG) und (dG-dA-dG)p, die in den Laufmittelsystemen A und B einheitlich wandern. Die R_F -Werte sind etwas niedriger als die der zuvor eluierten Trinucleotide $p(dA_2,dG)$. Nach Phosphatasebehandlung wandert das vollständig abgebaute Produkt im Laufmittelsystem A einheitlich und wiederum etwas langsamer als die dephosphorylierten Hauptprodukte von Peak VIb₁ und VIb₂. Aus dem dephosphorylierten Produkt erhält man mit Phosphodiesterase pdA, pdG und dG im Verhältnis 0.97:1.00:1.07. Da dA nicht gefunden wird, kann (dA-dG-dG) nicht vorliegen. Beim Partialabbau entsteht (dG-dA), damit kann das mögliche Sequenzisomere (dG-dG-dA) ausgeschlossen werden. Aus dem direkten Abbau mit Phosphodiesterase ergibt sich die Zusammensetzung der Mischung zu 71% p(dG-dA-dG) und 29% (dG-dA-dG)p. Das Lyophilisat von Peak VId (Fig. 2f) trennt sich im Papierchromatogramm in 1 Neben- und 2 Hauptflecke auf. Der langsamer wandernde Hauptfleck, dessen Peakanteil 53% ist, enthält eine Mischung sequenzisomerer Tetranucleotide 89% $p(dA_2,dG_2)$ und 11% $(dA_2,dG_2)p$, die in den Laufmittelsystemen A und B einheitlich wandern. Die Anwesenheit von 3'- neben 5'-Tetranucleotiden wird durch direkten Abbau mit Phosphodiesterase bewiesen. Nach Behandlung mit Phosphatase wandert das Abbauprodukt in den Laufmittelsystemen A und B einheitlich. Mit Phosphodiesterase erhält man pdA, pdG, dA und dG. Die Summen aus (pdA+dA) und (pdG+dG) treten im Verhältnis 1.00:1.09 auf. Die gemessenen Absorptionsverhältnisse stimmen mit den berechneten überein. Der schneller wandernde Hauptfleck (Peakanteil 38%) enthält mehrere Produkte, die nicht näher identifiziert werden.

DISKUSSION

In der vorliegenden Arbeit wird erstmals die präparative Isolierung definierter Purinoligonucleotide aus dem Hydrolysat einer depyrimidinierten DNA beschrieben. Der Unterschied der hier beschriebenen Isolierung zu den bislang nur im analytischen Masstab bekannten Trennungen¹⁵ besteht darin, dass alle Substanzen nicht nur in präparativer Menge isoliert, sondern auch eindeutig identifiziert und charakterisiert werden. Dies wird dadurch möglich, dass die Aufarbeitung des Partialhydrolysats nicht, wie in den analytischen Trennungen, in einem Schritt, sondern nach einem Trennungsgang schrittweise durchgeführt wird. Der beschriebene Trennungsgang ist allgemein anwendbar und nicht auf die Aufarbeitung des Partialhydrolysats der Heringsspermen DNA beschränkt. In Tabelle VII sind die Purinnucleotide und Gemische von Sequenzisomeren zusammengefasst, die aus dem Partialhydrolysat der depyrimidinierten Heringsspermen DNA in präparativen Mengen chromatographisch rein isoliert werden können. Diese Verbindungen sind in wenigen Trennschritten ohne

TABELLE VII

Purinnucleotide	Mischungen aus 3'-, 5'-Oligomeren	Mischungen von Sequenzisomeren
pdAp		······································
pdGp		
$(dA)_2$	$p(dA)_2, (dA)_2p$	
(dA-dG)	p(dA, dG), (dA, dG)p	(dA, dG)
(dG-dA)		
(dG) ₂	$p(dG)_2, (dG)_2p$	
$(dA)_3$	$p(dA)_3, (dA)_3p$	
(dA-dG-dA)	p(dA-dG-dA), (dA-dG-dA)p	
(dA-dA-dG)		
(dG-dA-dA)	p(dG-dA-dA), (dG-dA-dA)p	
(dG-dA-dG)	p(dG-dA-dG), (dG-dA-dG)p	
	$p(dA)_2, dG_2), (dA_2, dG_2)p$	(dA_2, dG_2)

PURINNUCLEOTIDE UND MISCHUNGEN VON SEQUENZISOMEREN, DIE IM PRÄPARA-TIVEN MASSSTAB AUS PARTIALHYDROLYSATEN DEPYRIMIDINIERTER HERINGSSPER-MEN-DNA ISOLIERT WERDEN grossen Aufwand und spezielle Kenntnisse erhältlich, während ihre chemische Synthese sicherlich weitaus aufwendiger sein würde.

Die Reinheit aller isolierten Purinnucleotide erfüllt vollständig die bei synthetischen Oligonucleotiden angewendeten Kriterien. So stimmen die beobachteten Absorptionsverhältnisse im Rahmen der Messgenauigkeit mit den berechneten Werten überein. In unterschiedlichen Laufmitteln wandern die Purinnucleotide vor und nach Behandlung mit alkalischer Phosphatase auf dem Papier einheitlich. Die Oligonucleotide können mit Phosphodiesterase aus Schlangengift vollständig abgebaut werden, wobei die gefundenen molaren Anteile der Spaltprodukte die erwarteten Werte bestätigen.

Bei den im analytischen Masstab beschriebenen Trennungen von Partialhydrolysaten depyrimidinierter DNA werden vorallem Oligonucleotide mit 2 terminalen Phosphatgruppen gefunden. Nur in wenigen Fällen werden auch partiell dephosphorylierte Produkte nachgewiesen. Im Gegensatz hierzu finden wir bei der Trennung im präparativen Masstab hauptsächlich Oligonucleotide mit nur einer terminalen Phosphatgruppe vornehmlich in 5'-Stellung. Vermutlich führt die Depyrimidinierung einer DNA mit anschliessender alkalischer Hydrolyse zunächst auch zu Oligonucleotiden mit 2 terminalen Phosphatgruppen, die während der Aufarbeitung die 3'-terminale Phosphatgruppe verlieren. Die terminale 5'-Phosphatgruppe ist vermutlich gegen eine weitere Hydrolyse relativ beständig, da Purinnucleotide ohne terminale Phosphatgruppen nur in geringen Mengen gefunden werden. Terminale Phosphatgruppen können, auch im präparativen Masstab durch Behandeln mit alkalischer Phosphatase mühelos entfernt werden, so dass alle Purinnucleotide auch ohne terminale Phosphatgruppen zugänglich sind.

Hervorzuheben ist ferner, dass auf dem hier beschriebenen Weg erstmals Mischungen von sequenzisomeren Purinnucleotiden im präparativen Masstab an Ionenaustauschern in ihre Komponenten getrennt werden, die bisher weder papierchromatographisch noch mit den beschriebenen analytischen Trennverfahren zu trennen sind. Dies ist überraschend, da entsprechende Pyrimidinnucleotidgemische an den gleichen Ionenaustauschern nicht aufgetrennt werden. Ihre Auftrennung gelingt nur mit Hilfe der HPLC und ist somit wesentlich aufwendiger.

DANK

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt.

ZUSAMMENFASSUNG

Die Purinnucleotide pdG, pdAp, (dA)₂, (dA-dG), (dG-dA), (dG)₂, (dA)₃, (dA-dG-dA), (dA-dG-dG), (dG-dA-dG), (dG-dA-dG), sowie definierte Gemische von sequenzisomeren Purinnucleotiden werden aus Partialhydrolysaten depyrimidinierter Heringsspermen-DNA in präparativen Mengen auf folgendem Weg in chromatographisch reiner Form isoliert. DNA aus Heringsspermen wird chemisch zu Purinnucleotiden partialhydrolysiert. Aus dem Purinnucleotidgemisch werden die niedermolekularen Oligonucleotide mit DEAE-Cellulose bei pH 7.5 säulenchromatographisch abgetrennt. Die Mischung der niedermolekularen Purinnucleotide wird anschliessend nach einem säulenchromatographischen Trennungsgang an QAE-Sephadex fraktioniert. Verunreinigungen, die in einigen Fällen säulenchromatographisch nicht entfernbar sind, werden papierchromatographisch abgetrennt. Die Sequenz der Purinnucleotide und die Zusammensetzung der Sequenzisomerengemische werden aus chromatographischen Daten, Absorptionsverhältnissen und durch enzymatischen Abbau eindeutig bestimmt.

LITERATUR

- 1 H. G. Gassen und A. Lang (Herausgeber), Chemical and Enzymatic Synthesis of Gene Fragments, Verlag Chemie, Weinheim, 1982.
- 2 H. Schott und M. Schwarz, Hoppe-Seyler's Z. Physiol. Chem., 359 (1978) 617.
- 3 H. Schott und M. Schwarz, J. Chromatogr., 157 (1978) 197.
- 4 H. Schott, J. Chromatogr., 172 (1979) 179.
- 5 H. Schott, J. Chromatogr., 187 (1980) 119.
- 6 M. Dizdaroglu, M. G. Simic and H. Schott, J. Chromatogr., 188 (1980) 273.
- 7 H. Schott und H. Watzlawick, J. Chromatogr., 196 (1980) 435.
- 8 H. Schott, Nucleic Acids Research, Symposium Series No. 7 (1980) 203.
- 9 H. Schott, Makromol. Chem., 182 (1981) 2015.
- 10 H. Schott, J. Chromatogr., 237 (1982) 429.
- 11 H. Schott und H. Watzlawick, J. Chromatogr., 243 (1982) 57.
- 12 V. Habermann, Coll. Czech. Chem. Commun., 28 (1963) 510.
- 13 E. Chargaff, J. Buchowicz, H. Tuerler and H. S. Shapiro, Nature (London), 206 (1965) 145.
- 14 A. S. Jones, A. M. Mian and R. T. Walker, J. Chem. Soc. C, (1968) 2042.
- 15 H. Tuerler, J. Buchowicz and E. Chargaff, Biochim. Biophys. Acta, 195 (1969) 456.
- 16 A. M. Maxam and W. Gilbert, Proc. Nat. Acad. Sci. U.S., 74 (1977) 560.
- 17 T. Watanabe, Anal. Biochem., 88 (1978) 62.